Due date: Sept. 4, 12:55PM

Submission Instructions:

• Each group must submit one solution to this assignment in class on the due date.

• Assignments must be neatly written or typed. If the grader cannot (easily) read an answer, she will give it a 0.

• Each group must submit only one solution. If multiple solutions are handed in, the grader will randomly discard all but one of them.

• Your submission must have the name of every group member clearly marked. If your name is not on it, you do not get credit.

• All arguments should be clear, concise, and (of course) correct. You will lose points for poor writing, bad grammar, etc...

• Use of the Internet for solving these problems is strictly forbidden, and will be treated as an honor code violation.

• Inter-group work: Members of different groups may discuss the questions. However:
 – With your submission you must provide a list of all non-group members with whom any member of your group discussed the assignment.
 – No written material may leave the inter-group discussion. If you talk with someone about the assignment, you must throw away and written notes at the end of the discussion.
Problem 1 (20 points): Consider the following pseudocode:

```plaintext
double pow(x, n):
(1)   if n == 0:
(2)       return 1
(3)   else:
(4)       r = floor(n/2)
(5)       p = pow(x, r)
(6)       v = p * p
(7)       if n % 2 == 1:
(8)           v = v * x
(9)       return v
```

Prove that for any integer $n \geq 0$ and any number $x \geq 0$, \(pow(x, n) \) returns the value x^n.

Problem 2 (20 points): Consider the following sorting algorithm:

```c
void StoogeSort(Array A, int i, int j)
(1) if A[i] > A[j]
(2) swap(A[i], A[j])
(3) if i < j - 1
    // t will be 1/3 the size of the array segment (rounded down)
(4) t <-- floor((j-i+1)/3)
(5) StoogeSort(A, i, j-t)
(6) StoogeSort(A, i+t, j)
(7) StoogeSort(A, i, j-t)
```

Prove that the call:

```
StoogeSort(A, 0, n-1)
```

sorts the array A (where A is an array of integers of size $n \geq 1$).
Problem 3 (20 points): Queen Consolidated has developed a new inter-city transportation method to move products between its n distribution centers scattered around Starling city. They have dug tunnels directly between every pair of centers. Tunnels never intersect, and are designated to carry goods in a single direction. So between any two centers A and B, there is either a tunnel to carry goods from A to B or one to carry goods from B to A – but not both.

Prove that, regardless of the value of n or how the tunnels are directed, there must be way to walk through tunnels in order to visit every distribution center without ever going the wrong direction in a tunnel.