Due date: Jan 30, 9:00AM

Submission Instructions:

- Each group should work together as a team to produce solutions to these problems.
- All work is to be turned in as a PDF, and the document must be created using LaTeX.
- Each group will be asked to present their solution to at least one problem in class. Normally the presentation will include some sort of visual presentation such as Google Slides, LaTeX PDF, or PowerPoint.
- Your group will not know which problem(s) you will present, so you must be prepared for all of them.
- Each person must submit one complete solution to this assignment in before class on the due date.
- Each person should also submit any additional presentation to Moodle as well.
- Your submission must have the name of every group member clearly marked. If your name is not on it, you do not get credit.
- All arguments should be clear, concise, and (of course) correct. You will lose points for poor writing, bad grammar, etc...
- Use of the Internet for solving these problems is strictly forbidden, and will be treated as an honor code violation.
- Inter-group work: Members of different groups may discuss the questions. However:
 - With your submission you must provide a list of all non-group members with whom any member of your group discussed the assignment.
 - No written material may leave the inter-group discussion. If you talk with someone about the assignment, you must throw away and written notes at the end of the discussion.
Problem 1 (20 points): Consider the following pseudocode:

double pow(x, n):
(1) if n == 0:
(2) return 1
(3) else:
(4) r = floor(n/2)
(5) p = pow(x,r)
(6) v = p * p
(7) if n % 2 == 1:
(8) v = v * x
(9) return v

Prove that for any integer $n \geq 0$ and any number $x \geq 0$, $pow(x, n)$ returns the value x^n.
Problem 2 (20 points): Consider the following sorting algorithm:

void StoogeSort(Array A, int i, int j)
(1) if A[i] > A[j]
(2) swap(A[i], A[j])
(3) if i < j-1
 // t will be 1/3 the size of the array segment (rounded down)
(4) t <-- floor((j-i+1)/3)
(5) StoogeSort(A, i, j-t)
(6) StoogeSort(A, i+t, j)
(7) StoogeSort(A, i, j-t)

Prove that the call:

 StoogeSort(A, 0, n-1)

sorts the array A (where A is an array of integers of size n ≥ 1).
Problem 3 (20 points): Consider the following non-recursive sorting algorithm:

```c
void SelectionSort(Array A, int n)
(1) for i = 1 to n,
(2)     k = i
(3)     for j = i+1 to n
(4)         if A[j] < A[k]
(5)             k = j
(6)         end if
(7)     end for
(8)     swap A[i,k]
(9) end for
```

Prove using loop invariants and induction that the call:

```c
SelectionSortSort(A, A.size())
```

sorts the array A (where A is an array of integers of size \(n \geq 1 \)).